9) MULTIPRED: a computational system for prediction of promiscuous HLA binding.

Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W172-9.
PUBMED PMID: 15980449
Out link: Full-text
Impact Factor Year 2009: 7.479
No. of Citations: 70 (total): 51 (non-self) & 19 (self)

ABSTRACT :

MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules (proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability (area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets--termed T-cell epitope hotspots. MULTIPRED is available at http://antigen.i2r.a-star.edu.sg/multipred/.

This article has been cited by other articles:

1) Zhang GL, Srinivasan KN, Veeramani A, August JT, Brusic V. PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W180-3. PMID: 15980450

2) Tongchusak, S, Chaiyaroj, SC, Veeramani, A, JLY Koh, Brusic, V. CandiVF – Candida albicans Virulence Factor Database. International Journal of Peptide Research and Therapeutics, Vol. 11, No. 4, December 2005, pp. 271–277.

3) Pietersz GA, Pouniotis DS, Apostolopoulos V. Design of peptide-based vaccines for cancer. Curr Med Chem. 2006;13(14):1591-607. Review. PMID: 16787206

4) Cui J, Han LY, Lin HH, Tang ZQ, Jiang L, Cao ZW, Chen YZ. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties. Immunogenetics. 2006 Aug;58(8):607-13. Epub 2006 Jul 11.
PMID: 16832638

5) Braga-Neto UM, Marques ET Jr. From functional genomics to functional immunomics: new challenges, old problems, big rewards. PLoS Comput Biol. 2006 Jul 28;2(7):e81. Review. PMID: 16863395

6) Peters B, Bui HH, Frankild S, Nielson M, Lundegaard C, Kostem E, Basch D, Lamberth K, Harndahl M, Fleri W, Wilson SS, Sidney J, Lund O, Buus S, Sette A. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol. 2006 Jun 9;2(6):e65. Epub 2006 Jun 9. PMID: 16789818

7) Mishra S, Sinha S. Prediction and molecular modeling of T-cell epitopes derived from placental alkaline phosphatase for use in cancer immunotherapy. J Biomol Struct Dyn. 2006 Oct;24(2):109-21. PMID: 16928134

8) Wan J, Liu W, Xu Q, Ren Y, Flower DR, Li T. SVRMHC prediction server for MHC-binding peptides. BMC Bioinformatics. 2006 Oct 23;7:463. PMID: 17059589

9) Petrovsky N, Brusic V. Bioinformatics for study of autoimmunity. Autoimmunity. 2006 Dec;39(8):635-43. Review. PMID: 17178560

10) Zhang, GL, August, JT, Kwo, CK, Brusic, V. Performance Evaluation of MULTIPRED1 on Prediction of MHC Class I Binders. Proceedings of the International Conference on Biomedical and Pharmaceutical Engineering, 2006. 2006 Page(s):307-313.

11) Zhang C, Bickis MG, Wu FX, Kusalik AJ. Optimally-connected hidden markov models for predicting MHC-binding peptides. J Bioinform Comput Biol. 2006 Oct;4(5):959-80.
PMID: 17099936.

12) Kosmopoulou, A., Vlassi, M., Stavrakoudis, A., Sakarellos, C. and Sakarellos-Daitsiotis, M. (2006) T-cell epitopes of the La/SSB autoantigen: prediction based on the homology modeling of HLA-DQ2/DQ7 with the insulin-B peptide/HLA-DQ8 complex, J Comput Chem, 27, 1033-1044.

13) Zhang, GL, Tong, JC, Zhang, ZH, August, JT, Zheng, Y, Kwoh, CK, Brusic, V. Computational Models for Identifying Promiscuous HLA-B7 Binders based on Information Theory and Support Vector Machine. International Conference on Biomedical and Pharmaceutical Engineering, 2006. Pages:319-323.

14) Rajapakse, M, Veeramani, A, Gopalakrishnan, K, Ananthanarayan, S, Srinivasan KN, August, JT, Khan, AM, Brusic, V. Temporal and antigenic analysis of dengue virus serotype 1 genome polyprotein sequences. Proceedings of the International Conference on Biomedical and Pharmaceutical Engineering, 2006. 2006 Page(s):301-306.

15) Khan AM, Miotto O, Heiny AT, Salmon J, Srinivasan KN, Nascimento EJ, Marques ET Jr, Brusic V, Tan TW, August JT. A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cell Immunol. 2006 Dec;244(2):141-7. Epub 2007 Apr 16. PMID: 17434154

16) Earnhart CG, Buckles EL, Marconi RT. Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine. 2007 Jan 5;25(3):466-80. Epub 2006 Aug 8.PMID: 16996663

17) Cui J, Han LY, Lin HH, Zhang HL, Tang ZQ, Zheng CJ, Cao ZW, Chen YZ. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol Immunol. 2007 Feb;44(5):866-77. Epub 2006 Jun 27. PMID: 16806474

18) Baker MP, Jones TD. Identification and removal of immunogenicity in therapeutic proteins. Curr Opin Drug Discov Devel. 2007 Mar;10(2):219-27. Review. PMID: 17436557

19) Brusic V, Marina O, Wu CJ, Reinherz EL. Proteome informatics for cancer research: from molecules to clinic. Proteomics. 2007 Mar;7(6):976-91. Review. PMID: 17370257

20) Zhang GL, Bozic I, Kwoh CK, August JT, Brusic V. Prediction of supertype-specific HLA class I binding peptides using support vector machines. J Immunol Methods. 2007 Mar 30;320(1-2):143-54. Epub 2007 Jan 25. PMID: 17303158

21) Tong JC, Tan TW, Ranganathan S. Methods and protocols for prediction of immunogenic epitopes. Brief Bioinform. 2007 Mar;8(2):96-108. Epub 2006 Oct 31. Review. PMID: 17077136

22) Kessler JH, Melief CJ. Identification of T-cell epitopes for cancer immunotherapy. Leukemia. 2007 Sep;21(9):1859-74. Epub 2007 Jul 5. Review. PMID: 17611570

23) Ostrout ND, McHugh MM, Tisch DJ, Moormann AM, Brusic V, Kazura JW. Long-term T cell memory to human leucocyte antigen-A2 supertype epitopes in humans vaccinated against smallpox. Clin Exp Immunol. 2007 Aug;149(2):265-73. Epub 2007 May 4. PMID: 17488297

24) Trost B, Bickis M, Kusalik A. Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools.
Immunome Res. 2007 Mar 24;3:5. PMID: 17381846

25) Calvo-Calle JM, Strug I, Nastke MD, Baker SP, Stern LJ. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog. 2007 Oct 12;3(10):1511-29. PMID: 17937498

26) Radhakrishnan ML, Tidor B. Specificity in molecular design: a physical framework for probing the determinants of binding specificity and promiscuity in a biological environment.
J Phys Chem B. 2007 Nov 29;111(47):13419-35. Epub 2007 Nov 3. PMID: 17979267

27) Heiny AT, Miotto O, Srinivasan KN, Khan AM, Zhang GL, Brusic V, Tan TW, August JT. Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS ONE. 2007 Nov 21;2(11):e1190. PMID: 18030326

28) Jacob, L, Vert, JP. Epitope prediction improved by multitask support vector machines. http://arxiv.org/abs/q-bio/0702008

29) Zhang, GL, Khan, AM, Srinivasan, KN, Heiny, AT, Lee, KX, Kwoh, CK, August JT, Brusic, V. Hotspot Hunter: a computational system for large-scale screening and selection of candidate immunological hotspots in pathogen proteomes. BMC Bioinformatics 2008, 9(Suppl 1):S19

30) Tongchusak S, Brusic V, Chaiyaroj SC. Promiscuous T cell epitope prediction of Candida albicans secretory aspartyl proteinase family of proteins. Infect Genet Evol. 2008 Jul;8(4):467-73. Epub 2007 Sep 25. PMID: 17974505

31) Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008 Apr 4;4(4):e1000048. PMID: 18389056

32) Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol. 2008 Mar 16;9:8. PMID: 18366636

33) Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008 Jan 25;4:2. PMID: 18221540

34) Verma J, Khedkar VM, Prabhu AS, Khedkar SA, Malde AK, Coutinho EC. A comprehensive analysis of the thermodynamic events involved in ligand-receptor binding using CoRIA and its variants. J Comput Aided Mol Des. 2008 Feb;22(2):91-104. Epub 2008 Jan 25. PMID: 18219446

35) Jacob L, Vert JP. Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics. 2008 Feb 1;24(3):358-66. Epub 2007 Dec 14.PMID: 18083718

36) Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008 Jan 22;9:1.PMID: 18211710

37) Karpenko O, Huang L, Dai Y. A probabilistic meta-predictor for the MHC class II binding peptides. Immunogenetics. 2008 Jan;60(1):25-36. Epub 2007 Dec 19. PMID: 18092156

38) Mallik, B., Morikis, D. Applications of molecular dynamics simulations in immunology: A useful computational method in aiding vaccine design. Current Proteomics, 2006 3 (4), pp. 259-270

39) Tong JC, Sinha AA. Immunological hotspots analyzed by docking simulations: evidence for a general mechanism in pemphigus vulgaris pathology and transformation. BMC Immunol. 2008 Jun 19;9:30. PMID: 18564435

40) Khan AM, Miotto O, Nascimento EJ, Srinivasan KN, Heiny AT, Zhang GL, Marques ET, Tan TW, Brusic V, Salmon J, August JT. Conservation and variability of dengue virus proteins: implications for vaccine design. PLoS Negl Trop Dis. 2008 Aug 13;2(8):e272. PMID: 18698358

41) Lara J, Wohlhueter RM, Dimitrova Z, Khudyakov YE.
Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein. Bioinformatics. 2008 Sep 1;24(17):1858-64. Epub 2008 Jul 15. PMID: 18628290

42) Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics. 2008 Dec 12;9 Suppl 12:S22. PMID: 19091022

43) Zhang H, Lundegaard C, Nielsen M. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Bioinformatics. 2009 Jan 1;25(1):83-9. Epub 2008 Nov 7. PMID: 18996943

44) Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics. 2009 Jan;61(1):1-13. Epub 2008 Nov 12. PMID: 19002680

45) Tambunan, U.S.F., Parikesit, A.A., Hendra, Taufik, R.I., Amelia, F., Syamsudin. In silico analysis of envelope dengue virus-2 and envelope dengue virus-3 protein as the backbone of dengue virus tetravalent vaccine by using homology modeling method. OnLine Journal of Biological Sciences. 2009, 9 (1), pp. 6-16

46)
Koo QY, Khan AM, Jung KO, Ramdas S, Miotto O, Tan TW, Brusic V, Salmon J, August JT. Conservation and variability of West Nile virus proteins. PLoS One. 2009;4(4):e5352. Epub 2009 Apr 29. PMID: 19401763

47)
Zhang H, Lund O, Nielsen M. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding.
Bioinformatics. 2009 May 15;25(10):1293-9. Epub 2009 Mar 17. PMID: 19297351

48) Pappalardo F, Halling-Brown MD, Rapin N, Zhang P, Alemani D, Emerson A, Paci P, Duroux P, Pennisi M, Palladini A, Miotto O, Churchill D, Rossi E, Shepherd AJ, Moss DS, Castiglione F, Bernaschi M, Lefranc MP, Brunak S, Motta S, Lollini PL, Basford KE, Brusic V. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief Bioinform. 2009 May;10(3):330-40. PMID: 19383844

49) Escobar H, Crockett DK, Reyes-Vargas E, Baena A, Rockwood AL, Jensen PE, Delgado JC.
Large scale mass spectrometric profiling of peptides eluted from HLA molecules reveals N-terminal-extended peptide motifs. J Immunol. 2008 Oct 1;181(7):4874-82.
PMID: 18802091

50) Delayed-Type hypersensitivity to latex: Computational prediction of MHC class II epitopes on latex allergens
Bell R. Eapen
Nature Precedings : hdl:10101/npre.2009.2931.1 : Posted 6 Mar 2009
http://precedings.nature.com/documents/2931/version/1/files/npre20092931-1.pdf

51) R Holland Cheng, Tatsuo Miyamura. Structure-based study of viral replication: with CD-ROM. World Scientific, 2008

52) http://www.cqvip.com/qk/90053x/2008009/28245363.html

53) http://www.cqvip.com/qk/83872x/2008006/27369733.html

54) HLA-DR: molecular insights and vaccine design.
Stern LJ, Calvo-Calle JM.
Curr Pharm Des. 2009;15(28):3249-61. Review.
PMID: 19860674

55) Prediction of MHC-peptide binding: a systematic and comprehensive overview.
Lafuente EM, Reche PA.
Curr Pharm Des. 2009;15(28):3209-20. Review.
PMID: 19860671

56) Identification of continuous human B-cell epitopes in the envelope glycoprotein of dengue virus type 3 (DENV-3).
da Silva AN, Nascimento EJ, Cordeiro MT, Gil LH, Abath FG, Montenegro SM, Marques ET.
PLoS One. 2009 Oct 13;4(10):e7425. Erratum in: PLoS One. 2009;4(10). doi: 10.1371/annotation/238cbff8-6794-4796-8a8a-a80d3b246757.
PMID: 1982663

57) Predicting MHC class I epitopes in large datasets.
Roomp K, Antes I, Lengauer T.
BMC Bioinformatics. 2010 Feb 17;11:90.
PMID: 20163709

58) Optimization algorithms for functional deimmunization of therapeutic proteins.
Parker AS, Zheng W, Griswold KE, Bailey-Kellogg C.
BMC Bioinformatics. 2010 Apr 9;11:180.
PMID: 20380721

59) Computational analysis of cysteine proteases (Clan CA, Family Cl) of Leishmania major to find potential epitopic regions.
Saffari B, Mohabatkar H.
Genomics Proteomics Bioinformatics. 2009 Sep;7(3):87-95.
PMID: 19944381

60) MHC Class II epitope predictive algorithms.
Nielsen M, Lund O, Buus S, Lundegaard C.
Immunology. 2010 Jul;130(3):319-28. Epub 2010 Apr 12.
PMID: 20408898

61) Computational characterization of Plasmodium falciparum proteomic data for screening of potential vaccine candidates.
Singh SP, Khan F, Mishra BN.
Hum Immunol. 2010 Feb;71(2):136-43. Epub 2009 Dec 31.
PMID: 19945493

62) Prediction of immunogenicity of therapeutic proteins: validity of computational tools.
Bryson CJ, Jones TD, Baker MP.
BioDrugs. 2010 Feb 1;24(1):1-8. doi: 10.2165/11318560-000000000-00000. Review.
PMID: 20055528

63) Nicholas Daniel Ostrout
Vaccinia and dengue viruses: exploring current fundamental issues of memory T cells and utilizing quantitative immunology to compare correlates of protection following smallpox immunization
PhD Thesis, 2008. Case Western Reserve University

64) The ImmunoGrid Simulator: How to Use It
Francesco Pappalardo, Mark Halling-Brown, Marzio Pennisi, Ferdinando Chiacchio, Clare E. Sansom, Adrian J. Shepherd, David S. Moss, Santo Motta and Vladimir Brusic
Computational Intelligence Methods FOR Bioinformatics and Biostatistics
Lecture Notes in Computer Science, 2010, Volume 6160/2010, 1-19, DOI:
10.1007/978-3-642-14571-1_1

65) MetaMHC: a meta approach to predict peptides binding to MHC molecules.
Hu X, Zhou W, Udaka K, Mamitsuka H, Zhu S.
Nucleic Acids Res. 2010 Jul 1;38 Suppl:W474-9. Epub 2010 May 18.
PMID: 20483919

66) Identification of conserved epitopes in Japanese Encephalitis Virus for rational design of vaccines
AY KC, AM Khan, TW Tan, A JT - nus.edu.sg
http://www.nus.edu.sg/nurop/2009/FoS/14th%20NUROP%20Congress_FoS/Life%20Sciences/Biochemistry/Au%20Yeung%20Kiu%20Chi_U052614J.pdf

67) Prediction of MHC class I binding peptides using probability distribution functions.
Soam SS, Khan F, Bhasker B, Mishra BN.
Bioinformation. 2009 Jun 28;3(9):403-8.
PMID: 19759816

68) 刺苋花粉泛过敏原 Profilin 的抗原性评估与三级结构分析
陶爱林, 刘林川, 王永飞, 邹泽红, 马三梅, 赖 … - 中华微生物学和免疫学 …, 2008 - cqvip.com
http://www.cqvip.com/qk/95714x/2008007/27915213.html

69) Immunoinformatics and modeling perspective of T cell epitope-based cancer immunotherapy: a holistic picture.
Mishra S, Sinha S.
J Biomol Struct Dyn. 2009 Dec;27(3):293-306. Review.
PMID: 19795913

70) Homology-free prediction of functional class of proteins and peptides by support vector machines.
Zhu F, Han LY, Chen X, Lin HH, Ong S, Xie B, Zhang HL, Chen YZ.
Curr Protein Pept Sci. 2008 Feb;9(1):70-95. Review.
PMID: 18336324

No comments: