2) Molecular evolution and phylogeny of elapid snake venom three-finger toxins.
Fry BG, Wuster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP.
J Mol Evol. 2003 Jul;57(1):110-29.
PUBMED PMID: 12962311
Out link: Full-text
Impact Factor Year 2009: 2.128
No. of Citations: 81 (total): 55 (non-self) & 26 (self)
Award won: Zuckerkandl prize
ABSTRACT :
Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this "three-finger toxin toolkit" will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.
This article has been cited by other articles:
1) Fry BG, Wüster W, Ryan Ramjan SF, Jackson T, Martelli P, Kini RM. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun Mass Spectrom. 2003;17(18):2047-62. PMID: 12955733
2) Fry BG, Lumsden NG, Wüster W, Wickramaratna JC, Hodgson WC, Kini RM. Isolation of a neurotoxin (alpha-colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes. J Mol Evol. 2003 Oct;57(4):446-52. PMID: 14708577
3) Fry BG, Wüster W. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol. 2004 May;21(5):870-83. Epub 2004 Mar 10. PMID: 15014162
4) Takacs Z, Wilhelmsen KC, Sorota S. Cobra ( Naja spp. ) nicotinic acetylcholine receptor exhibits resistance to Erabu sea snake ( Laticauda semifasciata) short-chain alpha-neurotoxin. J Mol Evol. 2004 May;58(5):516-26. PMID: 15170255
5) Musto H. The Zuckerkandl Prize. J Mol Evol. 2004 May; 58(5):491-492. http://www.venomdoc.com/downloads/2004_JME_Zuckerkandl_Prize_editorial.pdf
6) Lumsden NG, Fry BG, Manjunatha Kini R, Hodgson WC. In vitro neuromuscular activity of 'colubrid' venoms: clinical and evolutionary implications. Toxicon. 2004 Jun 1;43(7):819-27. PMID: 15284016
7) Wickramaratna JC, Fry BG, Loiacono RE, Aguilar MI, Alewood PF, Hodgson WC. Isolation and characterization at cholinergic nicotinic receptors of a neurotoxin from the venom of the Acanthophis sp. Seram death adder. Biochem Pharmacol. 2004 Jul 15;68(2):383-94. PMID: 15194010
8) Chetty N, Du A, Hodgson WC, Winkel K, Fry BG. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms.
Toxicon. 2004 Aug;44(2):193-200. PMID: 15246769
9) Siew JP, Khan AM, Tan PT, Koh JL, Seah SH, Koo CY, Chai SC, Armugam A, Brusic V, Jeyaseelan K. Systematic analysis of snake neurotoxins' functional classification using a data warehousing approach. Bioinformatics. 2004 Dec 12;20(18):3466-80. Epub 2004 Jul 22. PMID: 15271784
10) Li M, Fry BG, Kini RM. Eggs-only diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J Mol Evol. 2005 Jan;60(1):81-9. PMID: 15696370
11) Fry BG. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005 Mar;15(3):403-20. PMID: 15741511
12) Li M, Fry BG, Kini RM. Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (Marbled sea snake) phospholipase A2 toxins. Mol Biol Evol. 2005 Apr;22(4):934-41. Epub 2005 Jan 5. PMID: 15635056
13) Kryukova EV, Mordvintsev DY, Daya S, Utkin YN, Tsetlin VI. Polyclonal antibodies against native weak toxin Naja kaouthia discriminate native weak toxins and some other three-fingered toxins against their denaturated forms. Toxicon. 2005 Jul;46(1):24-30. PMID: 15925395
14) Heatwole H, Busack S, Cogger H. Geographic variation in sea kraits of the Laticauda colubrina complex (Serpentes : Elapidae : Hydrophiinae : Laticaudini)
Herpetological Monographs (19): 1-136 2005
15) Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families.
Annu Rev Genet. 2005;39:121-52. Review. PMID: 16285855
16) Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SF, Kuruppu S, Fung K, Hedges SB, Richardson MK, Hodgson WC, Ignjatovic V, Summerhayes R, Kochva E. Early evolution of the venom system in lizards and snakes. Nature. 2006 Feb 2;439(7076):584-8. Epub 2005 Nov 16. PMID: 16292255
17) Junqueira-de-Azevedo IL, Ching AT, Carvalho E, Faria F, Nishiyama MY Jr, Ho PL, Diniz MR. Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics. 2006 Jun;173(2):877-89. Epub 2006 Apr 2. PMID: 16582429
18) Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006 Aug 1;397(3):377-87. Review. PMID: 16831131
19) Zhang B, Liu Q, Yin W, Zhang X, Huang Y, Luo Y, Qiu P, Su X, Yu J, Hu S, Yan G. Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. BMC Genomics. 2006 Jun 15;7:152. PMID: 16776837
20) Sanz L, Gibbs HL, Mackessy SP, Calvete JJ. Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. J Proteome Res. 2006 Sep;5(9):2098-112.
PMID: 16944921
21) Hodgson WC, Wickramaratna JC. Snake venoms and their toxins: an Australian perspective. Toxicon. 2006 Dec 1;48(7):931-40. Epub 2006 Jul 14. Review. PMID: 16920171
22) Tsai IH, Tsai HY, Saha A, Gomes A. Sequences, geographic variations and molecular phylogeny of venom phospholipases and threefinger toxins of eastern India Bungarus fasciatus and kinetic analyses of its Pro31 phospholipases A2. FEBS J. 2007 Jan;274(2):512-25. Epub 2006 Dec 8. PMID: 17166178
23) Tamiya T, Fujimi TJ. Molecular evolution of toxin genes in Elapidae snakes.
Mol Divers. 2006 Nov;10(4):529-43. Epub 2006 Nov 10. Review. PMID: 17096076
24) Ineich, I., Goyffon, M., Dang, V. What is a snake dangerous for man? A snakebite case by an aglyphous opisthodoutous colubrid from Cameroon, Thrasops flavigularis (Hallowell, 1852). Bulletin de la Societe Zoologique de France. 2006, 131 (2), pp. 135-145
25) Bazaa A, Juárez P, Marrakchi N, Bel Lasfer Z, El Ayeb M, Harrison RA, Calvete JJ, Sanz L. Loss of introns along the evolutionary diversification pathway of snake venom disintegrins evidenced by sequence analysis of genomic DNA from Macrovipera lebetina transmediterranea and Echis ocellatus. J Mol Evol. 2007 Feb;64(2):261-71. Epub 2006 Dec 19. PMID: 17177090
26) Lynch VJ. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol Biol. 2007 Jan 18;7:2. PMID: 17233905
27) Palmer CA, Hollis DM, Watts RA, Houck LD, McCall MA, Gregg RG, Feldhoff PW, Feldhoff RC, Arnold SJ. Plethodontid modulating factor, a hypervariable salamander courtship pheromone in the three-finger protein superfamily. FEBS J. 2007 May;274(9):2300-10. Epub 2007 Apr 5. PMID: 17419731
28) Mordvitsev DY, Polyak YL, Kuzmin DA, Levtsova OV, Tourleigh YV, Utkin YN, Shaitan KV, Tsetlin VI. Computer modeling of binding of diverse weak toxins to nicotinic acetylcholine receptors. Comput Biol Chem. 2007 Apr;31(2):72-81. Epub 2007 Feb 23. PMID: 17392029
29) Anangi R, Chen CY, Cheng CH, et al. Expression of snake venom toxins in Pichia pastoris. Toxin Reviews 26 (2): 169-187, 2007
30) Rajagopalan N, Pung YF, Zhu YZ, Wong PT, Kumar PP, Kini RM. Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J. 2007 Nov;21(13):3685-95. Epub 2007 Jul 6. PMID: 17616557
31) Eirín-López JM, González-Tizón AM, Martínez A, Méndez J. Birth-and-death evolution with strong purifying selection in the histone H1 multigene family and the origin of orphon H1 genes. Mol Biol Evol. 2004 Oct;21(10):1992-2003. PMID: 15254261
32) Fry BG, Scheib H, van der Weerd L, Young B, McNaughtan J, Ryan Ramjan SF, Vidal N, Poelmann RE, Norman JA. Evolution of an arsenal: Structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics. 2007 Sep 17; [Epub ahead of print]. PMID: 17855442
33) AL HARVEY. Snake Venom Peptides. In Handbook of Biologically Active Peptides, Abba J. Kastin (Eds), 2006.
34) Pahari S, Bickford D, Fry BG, Kini RM. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes. BMC Evol Biol. 2007 Sep 27;7:175. PMID: 17900344
35) EXTRAÇÃO DAS GLÂNDULAS DE PEÇONHA. ODORNA TOTAL - bdtd.ufu.br
36) St Pierre L, Fischer H, Adams DJ, Schenning M, Lavidis N, de Jersey J, Masci PP, Lavin MF. Distinct activities of novel neurotoxins from Australian venomous snakes for nicotinic acetylcholine receptors. Cell Mol Life Sci. 2007 Nov;64(21):2829-40. PMID: 17906946
37) Maheshwari, R., Kumar, V., Verma, H.K. Neural network-based species identification in venom-interacted cases in India. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2007, 13 (4), pp. 766-781
38) Tsai HY, Wang YM, Tsai IH. Cloning, characterization and phylogenetic analyses of members of three major venom families from a single specimen of Walterinnesia aegyptia(,). Toxicon. 2008 Jun 1;51(7):1245-54. Epub 2008 Feb 29. PMID: 18405934
39) Olamendi-Portugal T, Batista CV, Restano-Cassulini R, Pando V, Villa-Hernandez O, Zavaleta-Martínez-Vargas A, Salas-Arruz MC, Rodríguez de la Vega RC, Becerril B, Possani LD. Proteomic analysis of the venom from the fish eating coral snake Micrurus surinamensis: novel toxins, their function and phylogeny. Proteomics. 2008 May;8(9):1919-32. PMID: 18384102
40) Doley R, Tram NN, Reza MA, Kini RM. Unusual accelerated rate of deletions and insertions in toxin genes in the venom glands of the pygmy copperhead (Austrelaps labialis) from Kangaroo island. BMC Evol Biol. 2008 Feb 28;8:70. PMID: 18307759
41) Gibbs HL, Rossiter W. Rapid evolution by positive selection and gene gain and loss: PLA(2) venom genes in closely related Sistrurus rattlesnakes with divergent diets. J Mol Evol. 2008 Feb;66(2):151-66. Epub 2008 Feb 6. PMID: 18253686
42) Angulo Y, Escolano J, Lomonte B, Gutiérrez JM, Sanz L, Calvete JJ. Snake venomics of Central American pitvipers: clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi. J Proteome Res. 2008 Feb;7(2):708-19. PMID: 18161938
43) Doley R, Mackessy SP, Kini RM. Role of accelerated segment switch in exons to alter targeting (ASSET) in the molecular evolution of snake venom proteins. BMC Evol Biol. 2009 Jun 30;9:146. PMID: 19563684
44) Fry BG, Roelants K, Norman JA. Tentacles of venom: toxic protein convergence in the Kingdom Animalia. J Mol Evol. 2009 Apr;68(4):311-21. Epub 2009 Mar 18. PMID: 19294452
45) Risch M, Georgieva D, von Bergen M, Jehmlich N, Genov N, Arni RK, Betzel C. Snake venomics of the Siamese Russell's viper (Daboia russelli siamensis) -- relation to pharmacological activities. J Proteomics. 2009 Mar 6;72(2):256-69. Epub 2009 Jan 20. PMID: 19457351
46) Fry BG, Vidal N, van der Weerd L, Kochva E, Renjifo C. Evolution and diversification of the Toxicofera reptile venom system. J Proteomics. 2009 Mar 6;72(2):127-36. Epub 2009 Jan 18. Review. PMID: 19457354
47) Binford GJ, Bodner MR, Cordes MH, Baldwin KL, Rynerson MR, Burns SN, Zobel-Thropp PA. Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. Mol Biol Evol. 2009 Mar;26(3):547-66. Epub 2008 Nov 28. PMID: 19042943
48) Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, Ménez R, Foo CS, Ménez A, Nirthanan S, Kini RM. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009 Feb;23(2):534-45. Epub 2008 Oct 24. PMID: 18952712
49) Georgieva D, Arni RK, Betzel C. Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev Proteomics. 2008 Dec;5(6):787-97. Review. PMID: 19086859
50) Karn RC, Clark NL, Nguyen ED, Swanson WJ. Adaptive evolution in rodent seminal vesicle secretion proteins. Mol Biol Evol. 2008 Nov;25(11):2301-10. Epub 2008 Aug 20. PMID: 18718917
51) Juárez P, Comas I, González-Candelas F, Calvete JJ. Evolution of snake venom disintegrins by positive Darwinian selection. Mol Biol Evol. 2008 Nov;25(11):2391-407. Epub 2008 Aug 13. PMID: 18701431
52) Yuan CH, He QY, Peng K, Diao JB, Jiang LP, Tang X, Liang SP. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS One. 2008;3(10):e3414. PMID: 18923708
53) Doley R, Pahari S, Mackessy SP, Kini RM. Accelerated exchange of exon segments in Viperid three-finger toxin genes (Sistrurus catenatus edwardsii; Desert Massasauga). BMC Evol Biol. 2008 Jul 8;8:196. PMID: 18606022
54) Levitin F, Weiss M, Hahn Y, Stern O, Papke RL, Matusik R, Nandana SR, Ziv R, Pichinuk E, Salame S, Bera T, Vincent J, Lee B, Pastan I, Wreschner DH. PATE gene clusters code for multiple, secreted TFP/Ly-6/uPAR proteins that are expressed in reproductive and neuron-rich tissues and possess neuromodulatory activity. J Biol Chem. 2008 Jun 13;283(24):16928-39. Epub 2008 Apr 3. PMID: 18387948
55) Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci. 2009 Jun 4. [Epub ahead of print]. PMID: 19495561
56) RP Hegde, N Rajagopalan, R Doley, RM Kini. Snake Three-Finger Venom Toxins. Handbook of Venoms and Toxins of Reptiles, 2009 - CRC
57) Naamati G, Askenazi M, Linial M. ClanTox: a classifier of short animal toxins. Nucleic Acids Res. 2009 Jul 1;37(Web Server issue):W363-8. Epub 2009 May 8. PMID: 19429697
58) Hoser R. A reclassification of the True Cobras; species formerly referred to the Genera
Naja, Boulengerina and Paranaja. Australasian Journal of Herpetology, 2009, 7:1-15.
59) Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG. GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res. 2009 Apr;50 Suppl:S57-62. Epub 2008 Oct 14. Review. PMID: 18854402
No comments:
Post a Comment